THEORY OF LIMIT EQUILIBRIUM OF BIMETALLIC
SHELLS OF REVOLUTION AND CIRCULAR PLATES

M. 8. Mikhalishin, Yu. V. Nemirovskii UDC 539.374.539.4.012.1
and O. N. Shablii

Bimetallic shells and plates are widely used in technology (see [1, 2]). An investigation into
the flexure and stability of thin shells and various types of loading within the limits of elasti-
city has been carried out in [3]. An investigation into the load-carrying capacity of cylindri-
cal bimetallic shells made of materials which equally resist tension and compression was
carried out in [4]. In many cases the materials of the base and plating layers of bimetallic
constructions possess substantially different plastic resistance under tension and compres-
sion [5]. The given paper is devoted to the investigation of the load-carrying capacity of bi-
metallic axisymmetric shells which are made of materials that have different resistances to
tension and compression; it is also devoted to the assessment of their economy in compari-
son with homogeneous shells.

1. We consider thin bimetallic shells of revolution, the two layers of which are made of different
ideally rigid-plastic materials with nonidentical yield points under tension and compression.

The surface separating the layers of the shell is taken as the reference surface, and we direct the Z
axis along the inner normal to this surface.

We introduce the notation

where ¢j', 04" (i=1, 2) are the principal stresses acting in the upper and lower layers; o g+, kgt are the
yield points of the materials under tension (plus) and compression (minus) of the upper and lower layers
respectively; o is the yield point of a certain conventional material,

We assume that the materials of the layers are rigidly joined to one another and each of them in the
limit state satisfies the plasticity condition of P. P. Balandin [6] which is linearized according to the
type of linearization of the Mises ellipse by the Tresca hexagon (Fig. 1). Here we have introduced the
notation

Te = — 17T+ 1 Ay =1 —¢
S = (s — st~ ;- 57, Ay =5 — T

Assuming that the Kirchhoff—Love hypothesis is valid for the entire cross section of the shell, we
express the principal strain rates & (i=1, 2) in terms of the strain rates £j, and the curvature rates 7§
of points of the reference surface

G =t — 2% 2=2Z[(h+ M), ti=1Ya(l1+ ho)%;

where h; and h, and the thicknesses of the upper and lower layers of the shell.
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The intensities of the forces and moments acting in the section of the shell are introduced by the ex-
pressions

hy he
T, = §.ci’dZ+Sc,~”dZ, M= § o/'2dZ + ofZdZ, i1=1,2 (1.1)
—hy 0 ~hy 0

Assuming that the shell takes up all the load-carrying capacity when both its constituent layers reach
the limit state, using the plasticity conditions and the associated flow rule adopted, it is not difficult to estab-
lish, just as in [7], the stress distribution in the limit state of the shell. The substitution of these stresses

into (1.1), after certain transformation enables us to obtain the final relationships between the forces and
moments in the limit state of the section of the shell.

In the following it is convenient to use the following dimensionless quantities

£ = T; 2 (t-*—— A1+ctAz>

P s (14a) T 1t a\* 2 !

o 4M; . (m* . azAz—Al) 4
M= —hrd aE — \TH 3 T+ ap

Ao (as, — Te) = 6F, mF a0, 4 1) =miE, a=he/ly
Bt = 2[4 mits, — (¢, 8F = 2[fmity, — ()P, i=1,2
Byt = 2 [ (mE — m*) 5, — (tit — £*)* ],
Oyt = 2{+ (it —m*) v, — (EFE — ¥, 0§ j=4,2; is]

Plastic states corresponding to the sides of the hexagons in Fig. 1 will be called regular states, while
states corresponding to the corners will be called singular states. Then the final relationships and the
corresponding flow rules, for cases where regular, or again the maximum number of singular plastic states,
are realized across the thickness of the shell (in the brackets we have shown the plastic states correspond-
ing to Fig. 1a, b and measured from the upper edge of the shell, as well as the parameters z,,, Zp, Zg's Zp's
I, m, n, p, q, r, which separate these states), have the form

(A1 BizosD \Ey, DoE,y) Or (D1E200A1B,4,B,) for @ = 2
(A1F1201C1Dy; CoDy) or  (C1Dyz0 4, Fy, AqF,) for i=1
do g WL = 0.
m; —‘i Y , Zm—:}:.r*y Zoa=¢q=T, p_O' (1.2)
In=p=gq T= —g‘

(A1By, A3Bs202’DyE,y) OT (D\Ey, DyEazey'AsB,) for i =2
(A1F1, AsFsz0)'CoDy) ox (CiDy, CoDyzoy'AyF,) for i =1

(L , tE
mit =4 ——; 2y =t
0

0
l=T, 201'::l=m, n=—6—

(B1CozosknFy, EyFs) or (E Fiz0:B,Cy, ByCy) for & = vy,
(BIC].’ B202Z03,E2F2) or (E1F17 EgFgZos’BQCz) fOI' 8 = Sy

T Ze =m=mn, (1.3)
Sx

Lt —t*)2 t+
gt — g = 4 BEZO fy=p=r=f A (1.4)
. : *
0 , Bt — 4t 0
q=5» %o =l=n=+4 > = LI m=-o-
(ApBygCirD Dy, (AyrFqE pD.D;) or (DrCyqB,p4,, 4,)
(D1pE qF\rAy, A,) for 8 = v,; (4,4,1B,;mC,nD,),
(A dgnFumEyD,) or  (Dy,DynCymB,yiAy), (Dy, DylEsmFondy)
for 5 =S*
8 [[ maE —mat \? — 4aE mE —myt 4 +2 +2 1.5
mit =+ () F o pm e @+ i )| (1-5)
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1 [t — mp® 2
= — = (fE
p 2 [ t;i _ tzi i [ (tl ty )] L

1 [ —met 2
9=—75 [m -+ f(tli + fzi)]

r

1 ImE—mt 2
— = T L (tF — -
2[ tlj:——tzi + Te ( 1 2 )]

(CirD\pE\gF,, F3), (CygB\pArF\Fy Yor (FiqEipDaCiCy) (Fird;pBigCy, C,)
for 8 = y4; (Cp ConDolE,;mF,), (C,ComBylAsnF,) for (Fp,FamEylDonC,),
(Fy, FonA,lB,mC,) for & = s,

= . 81 [me* 26\ 24 4 F
ml+'—T[T( ) e B + 5 7]
1 _ 2t0% \ 2t1 _ 1 mo¥* __
B -3 ) —7* 3 q= T( 3 -+ )
I 1 mo¥ 2a* (1.6)
TR Ty

(Bi, BamConD,lEy), (B,,BslAnF,mE,) or (Ey, EolDsnCymB,) (E,,
EymFondylB,) for 6 = s,; (ByCyrD pE,, E,), (BipArFigEy, Ey) or
(EpDyrCygB,, By), (E\qF.rApB,, By) for 8 = Y

4  26F [ max 2t1 +2
= iT[‘z_(z* T)"‘ 5\ & + 58
1 m* — 2n* o ma* 2% (1.7)
P=— + ) 7= e =+ T ) )
. 1 { m* 2% P
r_—_z—(tl*—t Yt)i Te

The expressions for the parameters 7, m, n in the relations (1.5)-(1.7) are obtained from the relation-
ships for the parameters p, q, r by replacing in them vy, by s« (A, By, B;, Cy, D;) or (Dy, E{, Ey, Fy, Ay),
[2/(1+a)<p<O<m<n<20/1+a)]fori=1, j=2, N =P, Ny =m, ng=n; (A, Fy, Fy, E,, D)) or (D, Cy, Cy,
By, A ["2/(1+a)<r<0<m< ] <2a/(1+0a)] for i=2, j=1, n;=r, ny=m, ng=1

1 {14 1
mit = o [ E 2 20 — 1) 4 B + S (2% — ) (1.8)
W= ZT (£ 2(20% — 1) + BE], M = 5 (= 2% — B,
M = —z,j: (2= 26% 4+ Bi%)

(El_, D11 D21 sz BZ) or (Bls Ala Azs F21 EZ) ( 2/('1 —|—oc)<p<0<n<
<m<<Zaf/f{l+a) for i=1, j=2,1 Ns =0,
(C1’ D17 D21 E27 F2) or (FH Al! A27 B2’ C2) (— 2/(1 + !1) < r< 0 <

<l<m<2a/(1 +a)) fori=2,j=1m=rm=m 4 =1

| Q—— -

* = kg (o 2@ — ) + B — - (F 247 + B
1 {
T = g [ 202 — %) + B7], T}2=T*(+ 2% + B;F),

i
M = 5 (F 24F — ;)

(1.9)

(By, €y, Cy, Dy, Ey) oY (Ey, Fy, F,, Az, Bz) (_ 2 / (1 + OL) <g<O0<
<n<<l<<20/(1 +o) fori=1, j=2, =1, s =mn;
(Fh Ela E21 Dz, 02) fOI' (Cl? B‘la B21 AZ’ F2) ("_ 2/(1 + a’) < q< 0 < l <
<n<2a/(1 +a) fori=2,j=1,m=¢n=nmn=1
=Yg (1 [ 20* + 875) 4 Bt — s 2(5F — 4% + Bt
=Yo7 I 2 (6% + 65 4 B, me = YasTH =2 (5 — %) + Bil, (1.10)
=1a5 [ 2 (5F — #:*) — BjiE]

(ClvDIs En Ezsz) or- (F15A1,B1,Bz: Cz) ( 2/(1 +a)<r<p<0<
<m+2a/(1 +a) for i=2,j=1, =

(Ey, Dy, €y, €y, By) fOT (B, A, Fh sz Ez) (_2/(1 +°‘)<P<r<0<
<m<2/(1+a)) for i=1,j=2,;y=rm=pns=m
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me* = £ (17 [ 2 (0* — ) — &F] — 7 IF 2 (6% + 1) — 4TI
= 2 — 6F) + 6:F], M= Yox[ [ 2(5F — 4F) — 8:F],
Mg = VoS, [T 2 (8% -+ ;) — 857F]

. (1.11)
(44, By, Cy, Co, Dy) O (D, Ey, Fy,y F, 2) (— 2/(1 ta<p<g<i<
<n<2a/(1+a))forl—2]—1 =g,Ns = B} (Al,F E,,
E21D2) or (DI? ClvBl'lB‘Z’ 2) (—"—'2/(1 +a)<r<Q< <l<
<2/(l+a) fori=1j=2 m=rnp=q¢n=1
mit =Yg (170 |k 26% 4 ) + 571 [ 2 (2t — 1F) — §%)?)
=1 (2 — 8),  Me =yt ( 26E 4 87E),
g = oS, [ 2 (26 — t%) — 8]
(Fl, E1’ Dn Dzv C2) or (Cly Blv AI’ AZ’ F2) ( 2/(1 + a) < q <p < (1‘]_2)
<0<n<2a/(1—i—a)) for i=2, j=1,y g, Ms=n;
(By, Cy, D\ Dy, E;) or (E,, Fy, Ay, Ay, By) ("‘ 2/(1 + 0‘) <g<r<
<0<l<Zae/l+a)) or.i=1,j=2, qy=rn=qn =1
mi* = My (Y7 (o 2% — ) — 7 [F 2 (26% — 1) -5
M=o (2 4 8F), M= or]T (d-26% — &), (1.13)

Ns = 1/25:1 [+ 2 (2ti* - tji) — 6ji]

In the expressions presented above the upper sign corresponds to the distribution of the plastic states
indicated in the first place, while the lower sign corresponds to the distribution of the states indicated in
the second place. The parameters p, q, r, [, m, n, determining the ordinates of the surfaces which separate
the different plastic states across the thickness of the shell, are introduced as follows:

__ Ew o Ew-dém B 2

=4 1= Srm TR T Tra<?<0
_ &w __ Enfdw B 20
=% mm g P he 0SPSTa

In each of the cases (1.2)-(1.13) these parameters must satisfy certain inequalities giving rise to
constraints for the corresponding portion of the limit hypersurface of yield.

2. When solving certain particular cases we can use three-dimensional yield surfaces, which con-
siderably simplifies the process of selecting plastic states. In Fig. 2 we have shown the yield surface for
a symmetrically loaded eylindrical shell (y, =0). We shall present the equations constraining the parts of
its surface.

The parts obtained by means of regular states of the yield conditions in terms of stresses (Fig. 1):

2,

m1*= ds*;—’h - 43 2t1*+as*-—-'r*),
_IL‘%E_S:‘_ gtl*g.ﬂ%‘_’r_‘*. 2.1

2. | 1 2

my* = — —a"s%‘ -+ T (284% + as; — 1)
_ T*—gd-& < < 'Y*—st* (2.2)
m* = — _____azs* tTe + (2751 + sy — Y4) L _2- e Sur< e —: = 2.3)
m1*=ﬁ#‘—zi—*(—251*+03*—'\'*)2, AR 2.4)

The parts obtained by means of singular plastic states;

b* = (08 + Ta) /2, OO0 <Cosy +72) /2 2.5)
¥ — t* = (osy + v4) /2, — (asy + va) /2046 <C0 (2.6)
m* = (a¥sy + Ya) /2 — Yosum {12 (6% — 4%) — yul* + (= 267 + asy)?) @.7)
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Fig. 2
Cm = (o, va) /2 — M (Ve (= 26* om0 — %) — vel?) 2-8)
my* = (o + va) /2 — Yavu {I2(6% — 1*) — vult + (— 26* + as,)?) 2-9)
m* = — (02 + a) /2 F Yo st {I2 (8% — £%) + as,]? + (26* — v} (2.10)
m* = — (o2, + va) /2 + Yo (vt [2 (6% — %) + as,]? + st (26% — v4)?) (2.11)
mi* = — (s + Va) /2 + Yo Vet {12 (8% — 8¥) + asyJ? + 26 — va)) 2.12)

The surface (Fig. 2) is symmetrical about the origin. of the coordinates. The numbers in Fig. 2 de-
note the corresponding surfaces given by Egs. (2.1)-(2.12).

The flow rule for any part of the surface presented in Fig. 2 is written in the form

coLsoLpo__of  of | of (2.13)
Slo.Bgo.klﬂa—tl.a—tz.aml

where k; =—1/3 ¥, and f (t;, t;, m;) =0 is the equation (in coordinates without the asterisks) of this surface.

In the following, when solving the problems, we use an approximation of the surface thus found, this
approximation having been obtained by continuing the parts (2.1)-(2.6) (and the parts symmetric to them) up
to their intersection. Inthe caset, =t,the limit relationships obtainedby means of regular states have the form

2 1
my* = — % + 4_.],*(2’5* + 08 — Y4l (2.14)

_ “3*;-’1’* <t T*_zas*
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mz*:M——(—Zt*+as*—T*), ﬁ}&<t*<f%@_ (2.15)

2
mtm — L2 ETe 1 o fos,— 1), BT Befle (2.16)
™ 2 2
2 —_
m2*=g—s"2iri——-4—s—(—2t*+as*+'}’*), _E&#_gt*<gfi_2_&_ (2.17)

my* — my* = (0% 4 Te)/ 2 — (G5 — T4)? /48,

2.18
b=y 5, <y O=s54 a5 >y ( )

The limit relationships obtained by means of singular states (for asy= 7y,) have the form

1 1 [mg* - 2t*\2 2% —as, -1, [ me* ——2t* (4 2t% — as, 4 7,)2
iml*-———i—{azs*-}—q'*—'r*[—z—(t—,—i— 7*) +——ﬁ( I )+—T** * ]}

+my* =1y ['T:l (08y — Yy — 012F) — S:l (F A4t* 4 as, — 1y — 012F)?
dmg* = — Vg (77 (T 26* 4 asy, — 15 — 0,7 — 571 (d= 26% + a5y — T4 — 6,F)7]
+my* =1/, [T:l (=2t + asy — Yy + B F)E — 3:1 (- 2t* + asy — 75 + BF)

The surface is symmetric about the origin of the coordinates.

Analogously to the previous case, in the solution of the problem it is more convenient to use an approx-
imation of the given surface, this approximation having been obtained by continuing its parts (2.14)-(2.18)
and those symmetric to them as far as their intersection. In Fig. 3 we have presented such an approxi-
mated surface.

Proceeding from the expression for the rate of dissipation of mechanical energy during a plastic flow
in the case t, =t, =t, we find that the flow rule for any part of the surface thus obtained will be

6]‘ of . of

(€1o+320) by loy = S Py * Gma (2.19)

where ki =—1/2'§/i (i=1, 2) and f(t, m;, my) =0 is the equation of this part.

3. As an example we consider the problem of determining the limit load for a closedcylindrical shell
with plane lids at the ends, subjected to an internal pressure of intensity q. We assume that the shell and
the circular plate (the lid) are made of a bimetal with identical constituents (i.e., with identical base
materials and identical materials of the plating layers), but with different thicknesses of the layers in the
cylindrical part and in the lids.

We properly refer the shell to a cylindrical coordinate system with the origin on the surface separat-
ing the layers of the bimetal and dividing the generator of the cylinder of length 2L into equal halves. The
X axis is directed along the generator; the Z axis is directed along the inner normal of the shell. The plate
is referred to an r, Z' coordinate system with the origin on its surface separating the surfaces at the cen-
ter of the plate. The r axis is assumed to be directed along the radius of the plate; the Z' axis is directed
along the normal to the plane separting the layers and directed into the shell.

We introduce the following notation

¢ oz or 2z ke
=T T iR STE YU mame M H
Hs . Uo . oW, . U
(12=T[-1—, LI.0=——L—7 wozm—;l;, u'IL:'?{'L’ (3'1)
n Hi{+ Hy’ Sohy (1 + az)

where h and h;, are the height of the upper and lower layers of the shell; H,, H, are the corresponding
quantities for the plate (the layer located in the posmve direction of the ¢ axis is taken as the lower layer);
R is the radius of the plate (the shell); Uo, Wo, Uns Wn are the rates of displacement of points on the sur-
face separating the layers, in the direction of the x, z, £, ¢ axes for the shell and the plate respectively.
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Taking into account the notation (3.1), we write relationships of the Kirchhoff—I.ove hypothesis in the

form:
a) for the shell
. s . . _ dito . ﬁ 2 (1 +d1)2 d22b0
€ = €19 — 2%y, Eo= gz ! T1= ( 2 ) % dzz ? (3.2)
b= bap = — THH b,
b) for the plate
. . . . ) ) da, i,
&= 80— LTy & =80 — Loy &= E o =g 5.3
. le(i+a2)2 dgwn _ﬂzw_i_ﬂ”_n_ (-
T (_H_) 4 g TR i § &
We consider three possible cases where the load-carrying capacity is fully taken up by the construc-
tion:

1) the shell is in the limit state (the plate is rigid);
2) the plate is in the limit state (the shell is rigid);
3) the entire construction is in the limit state.

To find the relationships between the parameters of the shell and the plate which lead to the cases
enumerated above, we must solve each problem separately.

1. A Cylindrical Shell with Rigidly Built-in Contour That Can Move in the Direction of the Generator.
The shell is loaded by an internal pressure of intensity q and a force T, =qR/2 uniformly distributed over
the ends and pulling along the generator.

The equations of equilibrium of an element of the shell are

dty d?my Bl

— Ba2 .
a7 az2 +2 ) (tz—p)—O
B, = b (1 +) B, = 2R g = L (3.4)
1T TH (1 o) ? 2= A+ ag ’ 3 = o~

In view of symmetry of the problem, in the following we consider only one half of the shell 0= x= 1.

The boundary conditions are written in the form

Q=dm;/de =0,ty=0,dw,/dc=0,2=0 (3.5)
—tym et P o, o _
h=th=gprara =2 2=0 =0 z=1 (3.6)

Q = 4LQ° [ogh*(1 + 0y)?
where Q° is the shear force.

From the loading conditions of the shell we draw the conclusion that, in its limit state, a plastic state
approximated by a yield surface that is analogous tothe part (2.5) (see Fig. 2) is fulfilled:

ty = tag = loy (55 — Bg) + v — Al /(1 + ) (3.7)
Using the expressions (2.13), (3.5)~(3.7), we find the flow rule
E10=0, 2 =0, %y =0, #y =4 (z — 1)
Since there is no possibility of satisfying the last one of the boundary conditions (3.5), (3.6), the

circles x=0and x=1 will be hinged [8]. Thus, instead of these boundary conditions we must satisfy the
following conditions {see (2.1)-(2.4)]:

—A
= g | AT T L [ )t Aut e+ A — 7l (3.8)

my
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vy —ose KU+ 0) &y + Ay + Ay < yse T oy

4 2 A —A 1 ‘ R
m = Ty {_ w? (s, + z;+r* 1 +Zf;[(1+“1)t1+l\1+al(s*+Az)aq’*]-}

if 0K +a)t, + A + 0 <y —aoyse for z=0

4 2(sy — As) - Ta+ A t -
m; = AT {a; U 2)2+Y ! “"4—1,:[—‘ (1+a1)t1—A1+(11(3*—Az)"—“l'*]2} for z=1 (3.9)

Solving the equations of equilibrium (3.4) with the conditions (3.7) and satisfying the boundary condi-
tions at the center of the shell and the first condition (3.6), we find

BB

2 4
my = 313 Z2(p — tae) + ETAp [— :

+ '4_‘15,: (p* + 048y — T*)z] , b= 5 (3.10)

o (84 4 A2) + 14 — A1
3

Here it was assumed that
p* =101+ ) P+ AL+ By > v — Sy

i.e., the condition (3.8) is satisfied.

Substituting the expression for m; from (3.10) into Eq. (3.9), for the finding of the limit load param-
eter we obtain the following quadratic equation

se 7 B2Bs2 Ya—Ss | _ (02 _
p* -m‘*i + p* [(1 -+ d‘l)—z—BT 4 (018 — Ty) —zgﬂi] (0% =+ Ty)
Sy +Ys

— (1 +a) %‘%3; [0 (55 =+ Bo) + Ty + Arl + (015 — 74)* Toite 0

-

When p* =y *+ a;8,, the shell fails due to the action of the axial load.

2. A Circular Plate Rigidly Fixed along the Outline, Subjected to an Internal Pressure of Intensity
q (the Gase where a,sx=+vyy).

The equations of equilibrium of an element of the plate are

FEI =t =0, Em)—m= Q%
roun (3.11)
Qu = oy = BiBapt

where Q; is the shear force, We assume that in the limit state of the plate the stress state corresponds to
the condition t;. =t;. Then from the first equation of equilibrium from (3.11) we find ty =tg =t =const >0 (0
0= &£ <1).

The boundary conditions of the problem are
ty=ty my=my, Q=0 for £=0 (3.12)
i, =0, w,=0 db,/df=0 for g=1 (3.13)
From the loading conditions we conclude that in the limit state of the plate the following plastic states
are realized [see Fig. 3 and (2.14)-(2.18)]
for 0CvCyw — oSy v = (1 + ) £+ A; + A,

— 1
0<E<p:mo— 4 [__ azz(s*-i-Azzl—l-n Ay +-4T*(T+(123*—T*)2] (3.14)

(1 4 %2)?

2 1
SE<limg —my = " | 5o (0gSy — V) — Bp28, —
P<ES imy —m = s [27* (ea — o) — 0" T*] (3.15)

for ye — otasy < T<C 28
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2 1
0<§<p'm9 == —(W [—28—*(7 +a2$* —-']’*)2—'(122(8* +Az) — Tk + Al] (3.16)

p =< £ = 1: the condition (3.15)
for 26 -<— TS azs* + Y %
0 = £ = 1: the condition (3.186).

The coordinate t* = ¢ of the point H (see Fig. 3) is determined according to the expression

b b VE—dee sty (e —sa) (05— T)
’ 2a ’ T sYe SeTx !
¢ = (G256 — 714 )? _ oePsy - Ta
4sye 2

In the following only Case 1 is considered. For this, using the relationships (2.19), (3.3), (3.14), (3.15)
and satisfying the continuity conditions for the displacements and dwy/d¢ for £ =p, as well as the first two
conditions from (3.13), we find

t= (14 ao) [Y4 — A1 — Og (54 4 A))]
=0, th,= 1[50 (plnp—1) +-1] for 0<E<p @.17)
i,=0, w,=w,Int for p<LEK1

From the relationship (3.17) we see that Case 1 is considered with justification, since the required
inequality for it is fulfilled.

Integrating the equations of equilibrium in each of the zones and satisfying the continuity conditions
for the transition of the quantity my, through £ =p, and also taking into account the relationship (3.14),
after having satisfied the boundary conditions (3.12), we obtain

My = g L1 — o — 02 6 + A3) + = (v + os — 1)) + - Bubar®? T 0<E<p
' 2 1 3

= e | [ e — 1 —otn ] () +

T

+ T (_'zr_ —+ OgSy — T*) — 0y2A, 4 Al} -+ 12BaBopE? for p<CE

o= [ mmrtras [+ T — S ]

M (3.18)

Since it is not possible to satisfy the condition (dwy /d£) (¢ =1) =0, for £ =1 there exists a plastic
hinge [8] and the boundary condition has the form

m, 4 [azﬂ (Sx — A‘z; + Yt A1 (Gese— Ta) ] for t—1

BGETE T

From the last condition we find that
4 * 2
P= e gm0 T 1) (25 —Inp) — Cr el (15 —1n 0]

3. A Cylindrical Shell with Plane Lids. In this case the expressions for the moments in each of the
consituent constructions are the same as in the first two cases. To find the limit load parameters we must

satisfy the continuity condition of the moments (M;, My) on the joint of the constructions, and also the con-
dition

4L, (1 + (11)2 d

=1 =tH (14 ay)

(the condition that the shear force in the shell (x=1) and the tensile force in the plate (¢ =1) are equal).
Finally, to find limit load parameter in Cases 1-3 (see 3.14)-(3.16) we find:
Case 1 for ¥ =0 and Case 2 for v =1
_ 2 1 e V2 qu2e. — 3 _ )
= A F oy {[—2-17*— (0985 — Tu) Op8y 7*] ( 5 lnip -+
+ = (—;_— + Casy — T*) — 0g®Ag -+ Ay — V(08 — Ta)? S*—_T*—} +—5B.Bap

Te PN
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and Case 3
o—_ 2 1 . 1
A [2_7* (T Casy — ¥o)? — @a® (54 + Ao) + Ay — 1’*] + 3 BiBop

where p is determined from the expression (3.18), while

e — As) e — A 48 111 2(sy + Ag) - T — A
@ = (B [p— B e {4_3*(_:%&.1, +A1+“1Ae+%s*—"r*)2‘ i el

—A —A
t = 8.8, [pl 2l 1-2::7* 1]

In Figs. 4 and 5 we have represented the graphs of the limit load depending on the geometry param-
eters B, and o = ¢y = o,inthe case §,=20, £5=5.0, y+='y' =1. Solid lines denotes the graphs for the
limit load of the rigidly fixed plate, the dashed lines denote them for the limit load of the cylindrical shell
with rigid lids, and the dash-dotted lines denote them for the case when the plate and the shell are in the
limit state.

If we consider the limit state of the construction as a whole, then for the given geometrical param-
eters, in the role of the limift load we must take the least of the three values of p. For those values of
the parameter for which the limit load for the rigidly fixed plate and the cylindrical shell with rigid ends
coincide, the entire construction is in the limit state. The construction parameters for which the last case
of limit state is realized should be considered optimum, On the graphs the corresponding points are de-
noted by circles.

If the dash-dotted line runs below the rest, then in these cases the entire construction is also in the
limit state.

When o =, =a, increases (an increase of the thickness of the layer of the stronger material, main-
taining the thickness of the construction as a whole), the value of the limit load increases.

From the comparison of the graphs of Figs. 4 and 5 we see that a replacement of the isotropic
material of one of the layers with a material baving different moduli, with a reduced yield point in tension,
leads to a considerable reduction in the limit load of the optimal design. But such reduction percentage-
wise is below the reduction of the yield point. Thus, a reduction of the yield point of the lower layer by
44% leads to a reduction of the limit load by 27%, when « =0.5; it amount to 10%, when « =0.1.

269



In Fig. 6 we have represented the results of caleulations to find

4 the optimal parameters for a two-layered construction made of stain-
12 less steel (d=7.7 g/cm?, o *=0g" =70 kg/mm?) and an aluminum
/inl.g_,/——;: alloy (d=2.85 g/cm®, og"=0g"=59.5 kg/mm?). We have taken o =a,=
Y Ty~ — oy =0.85, B, =20. The solid lines are plotted for the case where the
' e upper layer is made of the stainless steel, while the lower layer is
iy "N 11 m=s made of the aluminum alloy. The dashed lines denote the curves for a
' \\ \ single~layered construction of stainless steel having the same weight
Iy RN as the two-layered construction. If the arrangement of the layers of
' \ the bimetallic construction is altered so that the upper layer will be of
\\\ fy= [gg the aluminum alloy, while the lower will be of stainless steel, then in
oy ~Z \\ comparison with the preceding case, for small values of 3, the limit
\\\\‘\ load is almost unaltered, while for g, >0.4 it is higher by approxi-
0.z 5 mately 4-5%. The corresponding curves practically merge with those
presented in Fig. 6.
g 0z 04 05 08 p Comparing the values of the limit loads for the optimal designs,
Fig. 6 we can conclude that the replacement of the single-layered construc-

tion with a two-layered construction of the same weight, when one of
the layers has a reduced yield point, does not lead to a significant
reduction of the limit load, and in certain cases it can lead to an increase in it. Thus, in the case considered
a reduction in the yield point by 15% leads to a reduction of 4% in the limit load of the optimal design for
B3=0.5. When §4=5, it is 3.3% higher than the limit load for a single-layered steel construction.
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